Andung Bayu Sekaranom

KEJADIAN HUJAN EKSTREM WILAYAH TROPIS

Kombinasi Observasi Permukaan dan Satelit Meteorologis serta Karakteristik Lingkungan Pembentukannya

KEJADIAN HUJAN EKSTREM WILAYAH TROPIS Kombinasi Observasi Permukaan dan Satelit Meteorologis serta Karakteristik Lingkungan Pembentukannya

Penulis: Andung Bayu Sekaranom

Editor: Hadi Prasetyo

Desain sampul: Pram's

Tata letak isi: Abi

Penerbit: Gadjah Mada University Press Anggota IKAPI dan APPTI

Ukuran: 15,5 × 21 cm; xviii + 124 hlm **ISBN:** 978-602-386-923-7

Redaksi:

Jl. Sendok, Karanggayam CT VIII Caturtunggal Depok, Sleman, D.I. Yogyakarta, 55281 Telp./Fax.: (0274) 561037 ugmpress.ugm.ac.id | gmupress@ugm.ac.id

Cetakan Pertama: Desember 2020

Hak penerbitan ©2020 Gadjah Mada University Press

Dilarang mengutip dan memperbanyak tanpa izin tertulis dari penerbit, sebagian atau seluruhnya dalam bentuk apa pun, baik cetak, photoprint, microfilm, dan sebagainya.

KATA PENGANTAR

Puji syukur ke hadirat Allah Swt., atas limpahan rahmat dan karunia-Nya sehingga buku dengan judul *Kejadian Hujan Ekstrem Wilayah Tropis: Kombinasi Observasi Permukaan dan Satelit Meteorologis serta Lingkungan Pembentukannya* dapat diselesaikan. Buku ini disusun sebagai pedoman bagi peneliti, pengambil kebijakan, mahasiswa, serta masyarakat umum yang tertarik ataupun terlibat dalam kajian meteorologis yang berkaitan dalam bidang kebencanaan. Buku ini memberikan contoh-contoh hasil analisis yang telah dilakukan penulis agar pembaca mendapatkan gambaran secara jelas dalam analisis yang memanfaatkan data hujan sebagai salah satu sumbernya.

Perlu diketahui bahwa hujan ekstrem merupakan salah satu faktor utama pemicu kejadian bencana hidrometeorologis di Indonesia. Kejadian bencana hidrometeorologis yang semakin lama semakin meningkat pada saat ini menunjukkan pentingnya pemahaman mengenai karakteristik terjadinya hujan ekstrem. Pemahaman tersebut mencakup identifikasi berdasarkan stasiun meteorologis, karakteristik probabilitas, distribusi spasial, analisis berbasis satelit meteorologis, dan faktor penentu terjadinya hujan ekstrem.

Isi buku ini, terutama, ditujukan kepada pembaca level menengah yang telah memahami konsep-konsep dalam meteorologi, klimatologi, serta hidrometeorologi. Pemahaman atas konsep-konsep dasar fisika dan statistika juga disarankan bagi pembaca untuk dipelajari sebelum membaca buku ini. Sebagai tambahan, disarankan agar pembaca juga memahami konsep-konsep dalam estimasi data meteorologis berbasis satelit, terutama terkait dengan perbedaan sensor aktif dan pasif.

Akhir kata, penulis mengucapkan terima kasih kepada pihak-pihak yang telah membantu penyelesaian buku ini. Buku ini sangat terbuka dan terus dilakukan perbaikan dan penyempurnaan pada masa mendatang. Oleh karena itu, penulis mengundang para pembaca untuk memberikan kritik, saran, dan masukan guna perbaikan dan penyempurnaan buku ini. Atas kontribusi tersebut, penulis mengucapkan terima kasih. Mudah-mudahan kita dapat memberikan yang terbaik bagi kemajuan ilmu pengetahuan di Indonesia, terutama dalam bidang hidrometeorologi dan kebencanaan.

Yogyakarta, Maret 2020

Penulis,

Dr. Sc. Andung Bayu Sekaranom, M.Sc.

DAFTAR ISI

KATA PI	ENGA	NTAR	v
DAFTA	R ISI		vii
DAFTA	R TAB	EL	х
DAFTAF	R GAN	/IBAR	xi
BAB I	HUJ	AN EKSTREM DI INDONESIA	1
	1.1	Dinamika Atmosfer, Curah Hujan, dan Perubahan Iklim	
		dan Kaitannya dengan Bencana Hidrometeorologis di	
		Indonesia	1
	1.2	Identifikasi Curah Hujan Ekstrem	3
	1.3	Perkembangan Teknologi dalam Observasi dan	
		Pemantauan Curah Hujan	7
	1.4	Estimasi Curah Hujan pada Satelit Meteorologis dan	
		Model Atmosfer di Indonesia	9
	1.4	Studi Komparasi Estimasi Curah Hujan dan Validasi	
		di Lapangan	14
	1.5	Pengaruh Topografi terhadap Distribusi Hujan dan	
		Hujan Ekstrem: Contoh Kombinasi Data	19
BAB II	KON	NSEP ESTIMASI CURAH HUJAN BERBASIS	
	SAT	ELIT DAN APLIKASINYA UNTUK HUJAN	
	EKS	TREM	27
	2.1	Latar Belakang Pemanfaatan Teknologi Satelit untuk	
		Estimasi Curah Hujan	27
	2.2	Perkembangan Satelit Meteorologis	28
	2.3	Estimasi Curah Hujan Menggunakan Radar	
		Presipitasi (Sistem Aktif)	29
	2.4	Konsep Estimasi Curah Hujan Menggunakan	
		Gelombang Mikro (Sistem Pasif)	31
	2.5	Perbedaan Estimasi Curah Hujan pada Sistem Aktif	
		dan Pasif	32

	2.6	Faktor-Faktor Penentu Bias pada Estimasi Curah Hujan Ekstrem	33
BAB III	INTE	EGRASI DATA ESTIMASI CURAH HUJAN SATELIT,	
	PRO	FIL AWAN, DAN MODEL METEOROLOGIS	39
	3.1 N	/Ianfaat Integrasi Data	39
	3.2	Proses Integrasi Data	40
	3.3	Contoh Integrasi Data Estimasi Curah Hujan, Awan,	
		dan Karakteristik Atmosfer	41
	3.4	Proses Integrasi Secara Spasial dan Temporal	43
	3.5	Pembuatan Basis Data Curah Hujan Ekstrem	45
	3.6	Contoh Lengkap Metode Integrasi Data untuk	
		Analisis Hujan Ekstrem	46
BAB IV	EST	IMASI CURAH HUJAN EKSTREM DI BENUA	
	MAI	RITIM INDONESIA	50
	4.1	Curah Hujan Ekstrem di Benua Maritim Indonesia	50
	4.2	Interkomparasi Statistik Estimasi Curah Hujan di	
		Indonesia	53
	4.3	Perbandingan Distribusi Probabilitas Intensitas	
		Hujan	58
	4.4	Perbandingan Statistik Hasil Estimasi Curah Hujan	
		Esktrem	60
	4.5	Pengaruh Partikel Es Pada Awan terhadap Identifikasi	
		Hujan Ekstrem	65
BAB V	PER	BANDINGAN CURAH HUJAN EKSTREM PADA	
	TIN	GKAT REGIONAL DAN PERBEDAAN PROSES	
	FISI	SNYA	67
	5.1	Gambaran Global Bias pada Estimasi Hujan	
		Klimatologis dan Esktrem	67
	5.2	Siklus Diurnal dan Perbedaan Estimasi Curah	
		Hujan	75
	5.3	Struktur Vertikal Hujan dan Perbedaan Estimasi	
		Curah Hujan	80
	5.4	Emisi Gelombang Mikro Oleh Partikel Air dan	
		Hamburan Oleh Partikel Es pada Awan	84
	5.5	Perkembangan Sistem Konvektif dan Perbedaan	

		Estimasi Curah Hujan	88
BAB VI	KAR	AKTERISASI LINGKUNGAN PEMBENTUKAN	
	HUJA	AN EKSTREM	91
	6.1	Struktur Komposit Awan dan Fraksi Konvektif Hujan	
		Ekstrem	91
	6.2	Ketidakstabilan Atmosfer (<i>Atmospheric Instability</i>)	
		dan Perbedaan Estimasi Hujan Ekstrem	96
	6.3.	Organisasi Presipitasi dan Perbedaan Estimasi Curah	
		Hujan	100
	6.4.	Homogenitas Hujan dan Perbedaan Estimasi Curah	
		Hujan	104
BAB VII	KESI	MPULAN DAN PENUTUP	107
DAFTAR	PUST	ΓΑΚΑ	110
INDEKS	•••••		121
TENTAN	IG PEI	NULIS	123

DAFTAR TABEL

 menunjukkan distribusi yang lebih dominan pada topografi datar. Tabel 2. Jumlah total <i>grid</i> (termasuk <i>grid</i> tidak-hujan), rata-rata tidak bersyarat (rata-rata semua grid ≥ 0 mm/jam), dan rata-rata bersyarat (rata-rata semua <i>grid</i> untuk > 0.5 mm/ 	11
datar Tabel 2. Jumlah total <i>grid</i> (termasuk <i>grid</i> tidak-hujan), rata-rata tidak bersyarat (rata-rata semua grid \geq 0 mm/jam), dan rata-rata bersyarat (rata-rata semua <i>grid</i> untuk \geq 0.5 mm/	11
Tabel 2. Jumlah total <i>grid</i> (termasuk <i>grid</i> tidak-hujan), rata-rata tidak bersyarat (rata-rata semua grid ≥ 0 mm/jam), dan rata-rata bersyarat (rata-rata semua <i>grid</i> untuk ≥ 0.5 mm/	
tidak bersyarat (rata-rata semua grid ≥ 0 mm/jam), dan rata-rata bersyarat (rata-rata semua <i>grid</i> untuk ≥ 0.5 mm/	
rata-rata bersyarat (rata-rata semua <i>arid</i> untuk > 0.5 mm/	
futu futu bersyarut (futu futu bernau grite untuk * 0,0 mili)	
jam) berdasarkan jenis permukaan	54
Tabel 3.Persentase grid untuk intensitas hujan >0,5 mm/jam hingga	
>40 mm/jam berdasarkan algoritma dan jenis permukaan.	
Nilai maksimum permukaan ditampilkan dengan cetak	
tebal	55
Tabel 4. Jumlah profil CloudSat yang berkolokasi dan diobservasi	
untuk >10% teratas dari total data estimasi intensitas hujan	
TRMM	72

DAFTAR GAMBAR

Gambar 1.	Skema prediksi pola perubahan presipitasi di Pulau Jawa	
	serta hubungannya dengan banjir dan kekeringan	3
Gambar 2.	Contoh jenis distribusi data dan penentuannya	5
Gambar 3.	Contoh variasi distribusi data berdasarkan koefisien	
	kecondongan (skewness) dan kurtosis	6
Gambar 4.	Distribusi stasiun pengukur hujan di Jawa Tengah-DIY	
	(Data berasal dari BMKG)	10
Gambar 5.	a) Contoh metode pencampuran berbasis residu	
	menggunakan data estimasi satelit ataupun model	
	atmosfer sebagai nilai awal (background field) dan	
	alat pengukur hujan untuk penyesuaian estimasi curah	
	hujan; b) Contoh penentuan radius pengaruh dari titik	
	grid tertentu ke stasiun pengukur hujan terdekat	13
Gambar 6.	Contoh pemilihan teknik interpolasi, a) IDW, b) MA, dan	
	c) NN menghasilkan hasil interpolasi yang berbeda dan	
	memengaruhi validitas terhadap data pengamatan	16
Gambar 7.	Contoh nilai a) Korelasi, b) MBE, dan c) RMSE estimasi	
	curah hujan di Jawa Tengah dibandingkan dengan stasiun	
	pencatatan hujan menunjukkan variasi kualitas data hasil	
	estimasi terhadap data hasil pencatatan di lapangan	18
Gambar 8.	Peta curah hujan tahunan wilayah Jawa Tengah–DIY	
	periode 1998–2010. Curah hujan tertinggi terjadi pada	
	bagian tengah yang merupakan daerah pegunungan	20
Gambar 9.	Hujan ekstrem periode kala ulang 5 tahun, 10 tahun,	
	dan probable maximum precipitation untuk wilayah	
	Jawa Tengah dan DIY berdasarkan pengolahan data	
	TRMM dan data pencatatan lapangan. Hasil identifikasi	
	menunjukkan bahwa meskipun curah hujan kumulatif	
	lebih tinggi pada wilayah pegunungan, curah hujan	
	ekstrem lebih tinggi intensitasnya pada wilayah dekat	
	laut	21

Gambar 10.	Profil topografi beberapa gunung di wilayah Jawa	22
Gambar 11.	Profil curah hujan periode kala ulang lima tahunan dibandingkan dangan jarak dari lautan ka beberana	22
	pegunungan di wilayah Jawa Tengah–DIY	24
Gambar 12.	Profil curah hujan periode kala ulang 10 tahunan	
	dibandingkan dengan jarak dari lautan ke beberapa	
	pegunungan di wilayah Jawa Tengah–DIY	24
Gambar 13.	Profil PMP dibandingkan dengan jarak dari lautan ke	
_	beberapa pegunungan di wilayah Jawa Tengah	25
Gambar 14.	Skema proses yang memengaruhi distribusi curah hujan	
	ekstrem antara daerah pesisir dan pegunungan di wilayah	
	Jawa Tengah–DIY	26
Gambar 15.	Ilustrasi perbedaan konsep fisik antara sistem aktif	
	dan pasif dengan PR dan TMI sebagai contoh dalam	
	memperkirakan intensitas hujan. Sensor aktif pada	
	TRMM PR (kiri) mengukur reflektivitas radar partikel	
	hidrometeor berukuran besar, sedangkan sensor pasif	
	pada 1 MI (kanan) mengukur emisi gelombang mikro	
	partikel hidrometeor cair dan hamburan dari partikel es	
	pada lautan (atas), dan hanya hamburan partikel es saja	20
Combox 10	Pada daratan (Dawan)	30
Gambar 16.	instrasi proses estimasi curan nujan pada sistem aktir	21
Combor 17	(Conton untuk PK)	21
GalliDal 1/.	(Contoh pada TMI)	20
Combor 19	Koncon identifikaci hujan ekstrem pada sistem sonsor	52
Gallibal 10.	pacif berdasarkan kanal hamburan es (misal pada TRMM	
	TMI) Hujan ekstrem terbentuk akibat gerakan udara ke	
	atas yang bergerak cenat dan menghasilkan sejumlah	
	hesar partikel es pada puncak awan	35
Gambar 19	Struktur vertikal dari profil reflektivitas radar pada hujan	55
Guillour 15.	konvektif berdasarkan Hamada dkk (2015) Hujan	
	ekstrem diidentifikasi berdasarkan reflektivitas radar	
	> 40 dBz. Temuan di atas menuniukkan adanya hujan	
	ekstrem dengan tinggi puncak awan yang lebih rendah	
	dibandingkan ketinggian yang diasumsikan.	36

Gambar 20.	Evolusi temporal dari pembentukan hujan ekstrem	
	medel untuk kondici kolombanan rerata dan Ekonoriman	
	2 untuk popingkatan kalembanan ampat kali lipat	
	2 untuk peningkatan kelembapan empat kan npat	
	udil Ekspelillell 1. Hasil sillulasi illeligilasikali	
	vang teriadi labih ayal dicertai dengan ketinggian ayan	
	yang lebih rendah	37
Gambar 21.	Karakteristik tipe hujan berdasarkan satelit meteorologis:	
	(a) hujan konvektif, (b) hujan stratiform yang mengikuti	
	ekor dari awan konvektif, dan (c) hujan stratiform yang	
	disebabkan karena pengangkatan front hangat di atas	
	front dingin.	38
Gambar 22.	Contoh profil vertikal dari reflektivitas awan berdasarkan	
	data CloudSat. Sumbu x menunjukkan ukuran secara	
	horizontal, sementara sumbu y menandakan ketinggian	
	awan; a) menunjukkan awan kumulus dengan ketinggian	
	rendah (<i>shallow cumulus</i>), b) awan kumulonimbus	
	terisolasi (deep isolated convective), dan c) awan	
	kumulonimbus terorganisasi (organized convective)	42
Gambar 23.	Ilustrasi proses pencocokan data TRMM dan CloudSat.	
	Rangkaian waktu komposit CloudSat dihitung	
	menggunakan perbedaan waktu antara pengamatan	
	TRMM dengan CloudSat	47
Gambar 24.	Peta Benua Maritim dengan klasifikasi wilayah	
	daratan, lautan, dan pesisir. Daerah dengan warna gelap	
	menunjukkan intensitas hujan rerata lebih tinggi dari	
	daerah di sekitarnya dari estimasi curah hujan PR 2A25	
	tahun 1998–2014	51
Gambar 25.	Kontribusi kumulatif terhadap intensitas hujan rata-rata	
	(%) yang diperoleh dari PR (garis hitam solid), TMI	
	(garis hitam putus-putus), dan TMPA (garis abu-abu	
	putus-putus) untuk (a) lautan, (b) daratan, dan (c) pesisir;	
	dihitung dari masing-masing grid berukuran 0,25° untuk	
	tahun 1998–2014	58
Gambar 26	Probabilitas terlampaui untuk PR (garis hitam solid),	
	TMI (garis hitam putus-putus), dan TMPA (garis abu-	
	abu putus) di setiap grid 0,25° untuk tahun 1998–2014.	

Gambar 27.	Intensitas hujan dengan nilai <i>exceedence</i> yang mendekati 1 menunjukkan kemungkinan kejadian yang lebih tinggi. Plot mewakili setiap jenis permukaan dari kiri ke kanan: (a) lautan, (b) daratan, dan (c) pesisir Plot PCT minimum pada TMI 85 GHz dibandingkan dengan intensitas hujan rata-rata dari PR (titik hitam), TMI (tanda tambah berwarna hitam), dan TMPA (tanda silang abu-abu). Nilai PCT diperoleh dari nilai minimum	59
Gambar 28.	di dalam grid persegi 1/4° yang berkolokasi untuk tahun 1998–2014. Setiap titik mewakili nilai rata-rata untuk rentang data PCT 5 K. Hasilnya diklasifikasikan menjadi tiga jenis permukaan, dari kiri ke kanan: (a) lautan, (b) daratan, dan (c) pesisir Fraksi terhadap jumlah total kejadian hujan sebagai fungsi dari intensitas hujan dan PCT minimum pada TMI 85 GHz, diperoleh dari <i>grid</i> persegi ¼° yang berkolokasi	60
	pada tahun 1998–2014. Data diklasifikasi berdasarkan algoritma (dari atas ke bawah: PR, TMI, dan TMPA) dan jenis permukaan (dari kiri ke kanan: lautan, daratan, dan pesisir). Skala menunjukkan fraksi-fraksi total data untuk setian plot	61
Gambar 29.	Fraksi terhadap jumlah total kejadian hujan sebagai fungsi dari intensitas hujan dan PCT minimum pada TMI 85 GHz, diperoleh dari grid persegi ¼° yang berkolokasi pada tahun 1998–2014, tetapi untuk rata-rata 1% intensitas hujan teratas pada setiap rentang data PCT minimum cohocar 5 K (TMI 85 CHz)	62
Gambar 30.	Plot ketinggian puncak badai pada PR yang berkolokasi sebagai fungsi dari 1% intensitas hujan teratas di setiap rentang data PCT pada PR (titik hitam), TMI (tanda tambah berwarna hitam), dan TMPA (tanda silang abu- abu). Data 1% teratas diperoleh dengan mengamati TRMM dari tahun 1998 hingga 2014. Data ketinggian puncak badai diperoleh dari nilai rata-rata PR2A23 yang berkolokasi di setiap <i>grid</i> persegi ¼° dan diklasifikasi menjadi lautan (kiri), daratan (tengah), dan pesisir	62
	(kanan)	63

Gambar 31.	Rata-rata curah hujan vertikal pada PR2A25 yang berkolokasi untuk 1% kejadian ekstrem teratas pada PR (merah), TMI (hijau), dan TMPA (biru) yang diklasifikasi menurut empat rentang PCT minimum pada TMI 85 GHz (dari atas ke bawah: <160 K, 160–200 K, 200–240 K, dan >240 K) dan menurut jenis permukaan (dari kiri ke kanan: lautan, daratan, dan pesisir). Data 1% teratas diperoleh dengan mengamati TRMM dari tahun 1998 hingga 2014. Tanda silang menunjukkan interval kepercayaan 95%. Garis warna solid di sebelah kanan menunjukkan ketinggian pembekuan, sedangkan garis	
	pada PR2A23.	64
Gambar 32.	Peta global yang menunjukkan intensitas hujan dengan rata-rata tidak bersyarat (<i>unconditional</i>) dari a) PR TRMM, b) TMI TRMM, dan c) perbedaan nilai rerata	60
Gambar 33.	Peta global yang menunjukkan intensitas hujan ekstrem untuk 10% intensitas hujan teratas dari a) PR TRMM, b) TMI TRMM, dan c) perbedaan nilai rerata antara PR dan TMI.	70
Gambar 34.	Domain regional/wilayah yang digunakan sebagai contoh analisis. Warna menunjukkan jumlah kasus hujan ekstrem akibat proses konvektif di atas wilayah: (1) Global Tropis, (2) Benua Maritim, (3) Pasifik Barat, (4) Pasifik Tengah, (5) Pasifik Timur, (6) Amerika Selatan, dan (7) Afrika Tongah	70
Gambar 35.	Kontribusi intensitas hujan terhadap curah hujan total dari PR (merah) dan TMI (hijau) untuk domain lautan: a) Tropis Global, b) Benua Maritim, c) Pasifik Barat, d) Pasifik Tengah, dan e) Pasifik Timur.	72
Gambar 36.	Kontribusi intensitas hujan terhadap curah hujan total dari PR (merah) dan TMI (hijau) untuk domain daratan: a) Tropis Global, b) Benua Maritim, c) Amerika Selatan,	
Gambar 37.	dan d) Afrika Tengah Fraksi terhadap total kejadian hujan menggunakan basis waktu setempat untuk intensitas hujan melebihi 1 mm/ jam di atas domain lautan: a) Tropis Global, b) Benua	74

	Maritim, c) Pasifik Barat, d) Pasifik Tengah, dan e) Pasifik Timur	76
Gambar 38.	Fraksi terhadap total kejadian hujan menggunakan basis waktu setempat untuk intensitas hujan melebihi 1 mm/	, 0
	jam, tetapi hanya 10% intensitas hujan teratas untuk: a)	
	Tropis Global, b) Benua Maritim, c) Pasifik Barat, d)	
	Pasifik Tengah, dan e) Pasifik Timur	77
Gambar 39.	Contoh fraksi terhadap total kejadian hujan untuk	
	intensitas hujan melebihi 1 mm/jam di atas wilayah	
	daratan, meliputi wilayah: a) Tropis Global, b) Benua	
	Maritim, c) Pasifik Barat, d) Pasifik Tengah, dan e)	
	Pasifik Timur	79
Gambar 40.	Fraksi terhadap total kejadian hujan untuk intensitas	
	hujan melebihi 1 mm/jam di atas domain daratan, tetapi	
	hanya 10% intensitas hujan teratas untuk: a) Tropis	
	Global, b) Benua Maritim, c) Pasifik Barat, d) Pasifik	
	Tengah, dan e) Pasifik Timur	80
Gambar 41.	Profil reflektivitas PR TRMM yang berkolokasi dari	
	intensitas hujan PR (atas) dan intensitas hujan TMI	
	(bawah) untuk distribusi data 10% teratas. Atas (dari	
	kiri ke kanan): Lautan Tropis Global, Benua Maritim,	
	dan Pasifik Barat. Bawah (dari kiri ke kanan): Pasifik	
	Tengah dan Timur	82
Gambar 42.	Serupa dengan Gambar 41, tetapi untuk domain daratan.	
	Atas: Daratan Tropis Global (kiri) dan Benua Maritim	
	(kanan). Bawah: Amerika Selatan (kiri) dan Afrika	
	Tengah (kanan)	83
Gambar 43.	Distribusi antara PCT minimum TMI 85 GHz yang	
	berkolokasi terhadap intensitas hujan PR (atas) dan	
	intensitas hujan TMI (bawah) untuk wilayah lautan. Dari	
	kiri ke kanan: Tropis Global, Benua Maritim, Pasifik	
	Barat, Pasifik Tengah, dan Pasifik Timur. Bilah warna	
	menunjukkan jumlah titik data. Garis putih menunjukkan	
	suhu kecerahan; frekuensi hujan di atas 10% data teratas	
	mencapai titik maksimum	85
Gambar 44.	Distribusi bersama antara PCT minimum TMI 85 GHz	
	yang berkolokasi terhadap intensitas hujan PR (atas) dan	
	intensitas hujan TMI (bawah) untuk domain daratan. Dari	

	kiri ke kanan: Daratan Tropis Global, Benua Maritim, Amerika Selatan, dan Afrika Tengah	86
Gambar 45.	Suhu kecerahan TMI yang berkolokasi untuk kejadian ekstrem PR dan TMI di atas lautan pada setiap wilayah	
	(kiri-kanan) dan saluran suhu kecerahan (atas-bawah) .	87
Gambar 46.	Suhu kecerahan TMI yang berkolokasi untuk kejadian	
	ekstrem PR dan TMI untuk domain daratan	88
Gambar 47.	Fraksi awan CloudSat yang berkolokasi untuk kejadian	
	ekstrem PR (kiri) dan TMI (kanan) di atas domain lautan	
	yang diobservasi. Dari atas ke bawah: Lautan Tropis	
	Global, Benua Maritim, Pasifik Barat, Pasifik Tengah,	
	dan Pasifik Timur	92
Gambar 48.	Fraksi awan CloudSat yang berkolokasi untuk kejadian	
	ekstrem PR (kiri) dan TMI (kanan) untuk domain daratan.	
	Dari atas ke bawah: Daratan Tropis Global, Benua	
	Maritim, Amerika Selatan, dan Afrika Tengah	93
Gambar 49.	Evolusi temporal dari struktur awan CloudSat yang	
	berkolokasi relatif terhadap kejadian ekstrem TRMM	
	(tiga jam sebelum dan sesudah). Terdapat perbedaan	
	secara kontras pada struktur awan ekstrem PR dan TMI	
	di atas Benua Maritim (atas) dan Samudra Pasifik Timur	
	(bawah)	94
Gambar 50.	Fraksi awan CloudSat yang berkolokasi untuk kejadian	
	ekstrem PR (merah) dan TMI (hijau) di atas domain	
	lautan yang diobservasi. Corak warna menunjukkan	
	interval kepercayaan sebesar 95%	95
Gambar 51.	Fraksi awan CloudSat yang berkolokasi untuk kejadian	
	ekstrem PR (merah) dan TMI (hijau) untuk domain	
	daratan	95
Gambar 52.	Anomali kelembapan spesifik (biru) dan anomali suhu	
	udara (oranye) pada data ERA-Interim di atas lautan	
	dalam hal perbedaan antara PR dan TMI	97
Gambar 53.	Anomali kelembapan spesifik (biru) dan anomali suhu	
	udara (oranye) pada data ERA-Interim untuk domain	
	daratan	98
Gambar 54.	Perubahan temporal pada Convective Available Potential	
	Energy (CAPE) yang berkolokasi dari data ERA-Interim	

	untuk kejadian ekstrem PR (merah) dan TMI (hijau) di	
	atas domain lautan	99
Gambar 55.	Perubahan temporal pada Convective Available Potential	
	Energy (CAPE) yang berkolokasi dari data ERA-Interim	
	untuk kejadian ekstrem PR (merah) dan TMI (hijau)	
	untuk domain daratan	100
Gambar 56.	Ilustrasi perbedaan PR-TMI dalam mengidentifikasi	
	kejadian hujan lebat yang berasosiasi dengan presipitasi	
	yang terorganisasi di atas lautan. Gambar ini juga	
	menunjukkan perbedaan yang kontras antara Samudra	
	Pasifik Timur dengan Barat	102
Gambar 57.	Ilustrasi perbedaan PR-TMI dalam mengidentifikasi	
	kejadian hujan lebat yang berasosiasi dengan presipitasi	
	yang terorganisasi untuk domain daratan	103